Application of Neural Network for the Prediction of Eco-efficiency
نویسندگان
چکیده
This paper presents the application of neural networks in the design process of new technologies taking into account factors such as their influence on the environment and the economic effects of their implementation. The use of neural networks allowed eco-efficiency assessment of technologies based on highly reduced number of descriptive design parameters, which are very difficult to collect at the conceptual design stage. The great diversity of technologies involved along with the small number of available examples made difficult to construct a neural model and demanded careful data preprocessing and network structure selection.
منابع مشابه
Application of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error
Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...
متن کاملApplication of ANN-ICA Hybrid Algorithm toward Prediction of Engine Power and Exhaust Emissions
Artificial neural network was considered in previous studies for prediction of engine performance and emissions. ICA methodology was inspired in order to optimize the weights of multilayer perceptron (MLP) of artificial neural network so that closer estimation of output results can be achieved. Current paper aimed at prediction of engine power, soot, NOx, CO2, O2, and temperature with the ai...
متن کاملApplication of Response Surface Methodology and Artificial Neural Network for Analysis of p-chlorophenol Biosorption by Dried Activated Sludge
Phenolic compounds are considered as priority pollutants because of their high toxicity at low concentration. In the present study, the sorption of p-chlorophenol (p-CP) by dried activated sludge was investigated. Activated sludge was collected as slurry from the sludge return line of a municipal wastewater treatment plant. Sorption experiments were carried out in batch mode. In order to invest...
متن کاملModeling and Experimental Prediction of Wastewater Treatment Efficiency in Oil Refineries Using Activated Sludge Process
In this study, activated sludge process for wastewater treatment in a refinery was investigated. For such purpose, a laboratory scale rig was built. The effect of several parameters such as temperature, residence time, effect of Leca (filling-in percentage of the reactor by Leca) and UV radiation on COD removal efficiency were experimentally examined. Maximum COD removal efficiency was obtained...
متن کاملAdsorption of Fe (II) from Aqueous Phase by Chitosan: Application of Physical Models and Artificial Neural Network for Prediction of Breakthrough
Removal of Fe (II) from aqueous media was investigated using chitosan as the adsorbent in both batch and continuous systems. Batch experiments were carried out at initial concentration range of 10-50 mg/L and temperature range of 20–40˚C. In batch experiments, maximum adsorption capacity of 28.7 mg/g and removal efficiency of 93% were obtained. Adsorption equilibrium data were well-fitted with ...
متن کاملApplication of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction
This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...
متن کامل